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The dynamic response of an eccentric Griffith crack in functionally graded piezoelectric 

ceramic strip under anti-plane shear impact loading is analysed using integral transform 

method. Laplace transform and Fourier transtbrm are used to reduce the problem to two pairs 

of dual integral equations, which are then expressed to Fredholm integral equations of  the 

second kind. We assume that the properties of the functionally graded piezoelectric material vary 

continuously along the thickness. The impermeable crack boundary condition is adopted. 

Numerical values on the dynamic stress intensity factors are presented for the functionally 

graded piezoelectric material to show the dependence of the gradient of material properties and 

electric loadings. 
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(Functionally Graded Material), DSIF 

1. Introduction 

With the increase of smart structures, piezo- 

electric materials as actuating and sensing device 

have been widely used. In the use of piezoelectric 

structures, the dynamic loading is dominant and 

much attention have been paid to their dyna- 

mic fracture behavior. Shindo and Ozawa (1990) 

first investigated the steady response of a crack- 

ed piezoelectric material under the action of  inci- 

dent plane harmonic waves. Chen and Yu (1997) 

obtained the solution of a finite crack in an in- 

finite piezoelectric material under anti-plane dy- 

namic electro-mechanical impact using integral 

transform method. Axisymmetric vibration of 
piezo-composite hollow cylinder was studied by 

Paul and Nelson (I996). The dynamic represen- 
tation formulas and fundamental solutions for 
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piezoelectricity was proposed by Khutoryansky 

and Sosa (1995). The dynamic response of  a 
cracked dielectric medium under the action of 
harmonic waves in a uniform electric field was 
studied by Shindo et a1.(1996). Narita and 
Shindo (1998) investigated the scattering of  Love 
waves by a surface-breaking crack normal to the 
interface in a piezoelectric layer over an elastic 
half plane. Li and Mataga (1996a, 1996b) studied 
the semi-infinite propagating crack in a piezo- 
electric material with electrode boundary and 
vacuum boundary conditions on the crack sur- 
face. Chen (1998) obtained the solution of  the 
infinite piezoelectric strip parallel to the crack 
under anti-plane shear impact electro-mechanical 
loading using integral transform method. Shin 
et a1.(2001) obtained the solution of piezoelec- 
tric strip with an eccentric crack under anti-plane 

shear impact loading using integral transform 
method. Recently, fracture mechanics researches 

of  functionally graded piezoelectric material are 
presented. Li and Weng (2002) studied anti- 
plane crack problem in functionally graded piezo- 
electric strip. Shin and Kim (2003) obtained the 
solution of  the functionally graded piezoelectric 
strip with an eccentric crack under anti-plane 
shear. Transient response of  functionally graded 
piezoelectric body with crack was analysed by 
Shin et al. (2003). 

In this paper, we study the problem of a finite 
eccentric crack offthe center line in a functionally 
graded piezoelectric ceramic strip under anti- 
plane shear impact loading by the dynamic theory 
of linear electroelasticity. We assume that the pro- 

perties of the functionally graded piezoelectric 
ceramic strip vary continuously along the thick- 
ness. We adopt the impermeable crack boundary 
condition which is more suitable in this paper 
rather than permeable crack boundary condition 
(Xu and Rajapakse, 2001). Laplace transform 
and Fourier transform are used to reduce the 
problem to two pairs of dual integral equations, 
which are then expressed to Fredholm integral 
equations of  the second kind. Numerical results 
for the dynamic stress intensity factor are shown 
graphically. 

2. P r o b l e m  S t a t e m e n t  

and  F o r m u l a t i o n  

Consider a functionally graded piezoelectric 
body in the form of an infinitely long strip con- 
taining a finite eccentric crack off the center line 
subjected to mechanical and electric Heaviside 
step pulse loadings, as shown in Fig. 1. A set 
of  cartesian coordinates (x, y, z) is attached 
to the center of the crack. The piezoelectric cera- 
mic strip poled with z-axis occupies the region 
(- -oo<X<OO, - h 2 < _ y ~ h l ,  2 h = h l + h 2 ) ,  and is 

thick enough in the z-direction to allow a state 
of anti-plane shear impact. For convenience, we 
assume that upper (y ~0,  thickness hi) and lower 
( y < 0 ,  thickness h2) regions of  the strip cracked 
with the eccentricity e off the center line have 
different thicknesses but are consisted of the same 
functionally graded materials. The crack is situ- 
ated along the virtual interface line ( - - a < x  ~ a ,  

y = 0 ) .  Because of  the symmetry in geometry 
and loading, it is sufficient to consider only the 
right-hand half body. 

We assume that the properties of  the func- 
tionally graded piezoelectric ceramic strip vary 
continuously along the thickness and are simpli- 
fied as follows (Erdogan, 1985), 

c . =  d ,  e p" (1) 

d n  = d°, e p" (2) 

e _  n0 ~p, (3) 1 5 - -  ~15 

where c~, dn and els are the elastic modulus, 
the dielectric permittivity and the piezoelectric 

Fig. 1 A functionally graded piezoelectric ceramic 
strip with an eccentric crack: defintion of 
geometry and loading 
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constant, respectively, c ° ,  d°l and e°s are ma- 
terial properties at y = 0 ,  and/9 is the non-homo- 
geneous material constant. 

The piezoelectric boundary value problem is 
simplified considerably if we consider only the 
out-of-plane displacement and the in-plane elec- 
tric fields such that 

u, .= Uy~=O, u~i= w~(x, y, t) (4) 

Exi=Exi(X, y, t) 
(5) 

Eyi=Eyi(X, y, t), E~i=0 

where uhi and Eki(k=x,  y, z) are displace- 
ments and electric fields, respectively. Subscript 
i ( i=1 ,  2) stands for upper and lower regions, 
respectively. 

In this case, the constitutive relations become 

a~(x,  y, t)=c44w~j+e~5¢~ (6) 

D,(x ,  y, t )=e , sw, . j -dn¢ , j  (7) 

where a~i, D~i(j=x, y) and ¢i are the stress 
components, the electric displacements and the 
electric potential, respectively. 

The dynamic anti-plane governing equations 
for functionally graded piezoelectric materials are 
simplified to 

c-V2w, + e~s~z ¢~ + l~( c44 ~ - +  e~s 0¢' ~-] 

~w, (8) 
--P 3t z 

elsV2w~_&xV2¢~+ l~( e~ s_ff~_dn_ffy_] = O w l  0¢i~ 0 (9) 

where V2=OZ/8xa+~/Oy2 and p is a material 
density. We also assume the material density is as 
follows, 

p = pO e~y ( ! O) 

From Eqs. (8) and (9), we can obtain the equa- 
tion of wave motion in a form, 

VzWlq_fl ~Wi__ 1 ~Wi (11) 
Oy c~ ~t ~ 

where c2= ~ / ~  and / . t0=c°+ o2/no exs/~21 • 

The Laplace transform of Eq. (l l)  is in the 
form, 

V2wZ+5 ~w* =/?  wg (12) 
ay d 

where 

w~(x, y, p)=fo~Wi(X, y, t)e-Ptdt (13) 

w,(x, y, t) 2ziJc-~® w~(x, y, p)eP'dp (14) 

The superscript * stands for the Laplace trans- 
form domain. 

A Fourier transform is applied to the Laplace 
transform of Eqs. (9), and (12), and the results 
are 

w,.* (x, y, p) 
(15) 2 ® 

=zfo [ Au(s, P) e-q'Y + A,(s, P) e-~Y]cos (sx) ds 

¢*(x, y, p) 

_ 2 & ~®[A.,(s, p)e-q'Y+Aa(s, p)e~Y]cos(sx)ds (16) 

2 ® + ~  IB1/s, P) e-~Y+Ba(s, P) e~Y]cos (sx) ds 

where 

q 1 = 3 + ~  2 , q2=3 f12 (17) 

p , = A + ~ , / ~ = a  B2 (18) 

8 =  ~ 4 ~ ,  A = ~  (19) 

~ , = ~  (20) 

A~i and /~ji(j=l, 2) are the unknowns to be 
solved. 

Substituting Eqs. (15) and (16) into Eqs. (6) 
and (7) in the Laplace transform domain, we 
have the followings 

=lk2 ~®[-Ali(S, p) q~e-~% Aa(s, p) q2eq'qcos(sx) ds (21) 

Pl e pi e 'lc ls ;as 

O;,(x, y, p) 
(22) 

= - d~t 2~®[Bx~(s, l))I)~e-P'~+Bz~ (s, p)he ~y] cos (sx) ds 

The boundary conditions in the Laplace trans- 
form domain can be written as 
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{ o;.,(x, 0, p ) = -  r0 /p  (0<x<a) 
wT(x, O, p)=w~(x, O, p) (a~x<oo) (23) Bl~(s, p ) -  l--e-Zah~ l_e_ ,a  h MB(s, P) (37) 

e_4a h _ e-2at~ Dy*,.(x, O, p ) = - D o / P  ( 0 < x < a )  (24) Blz(s, p ) -  _e_4a h MB(S, p) (38) 
¢~(x, 0, p ) = ¢ ~ ( x ,  0, p) ( a < x < o o )  1 

e- -22h l  - -  e - 4 A h  
a$~l(x, 0, p ) = a L z ( x ,  0, p) (25) B21(s, p ) = f  l_e_,a h Ms(s, P) (39) 
Dy*~(x, O, p )=DL(x ,  O, p) ( a < x < o ~ )  

{ O~zl (x, hi, #) = tY~z2 (x, - h2, P) = 0  (26) Bzz (s, P) = - f  1 - e-2ah~ 
Dr*~(x, hx, p)=D~*2(x, -h2, P)=0 l - e  ,ah Mn(s, p) (40) 

where r0 and Do are a uniform shear traction and 
electric displacement, respectively. 

By applying the edge loading conditions Eq. 
(26), the unknowns in Eqs. (21) and (22) are 
evaluated as follows, 

Azl (s, p)=ke-2ShlAu(s, p) 
(27) 

Azz(s, p)=keZ~Az2(s,  p) 

Bzl (s, P) =fe-Zah'Bl~ (S, P) 
(28) 

Bz2(s, p)=feZa~Bzz(s, p) 

where 

k =  ql _ Pl (29) qz' f - N  

The continuity conditions of  Eq. (25) lead to the 
following relations between the unknowns, 

k{ A n  (s, p ) -A ,2 ( s ,  O)} (30) 
=Azl(s,  1))-A22(s, P) 

f {  Bu(s,  p) --Bl~(s, P)} 
(31) 

=Bzl(s, 1))-Bzz(s, p) 

It is convenient to use the following definitions, 

All(s,  p)-A12(s ,  P)=MA(S, P) 
(32) 

Bn(s,  p)-B~z(s ,  i0)=MB(s, p) 

Using the Eqs. (27) -- (32), we can obtain the 
following relations, 

1 -- e -zshz 
An(s ,  p ) =  l_e_4b, h MA(S, P) (33) 

e - 4 d h  - -  e--2Sh2 

Ale(s, P ) -  l_e_4S h MA(S, p) (34) 

~ - 2 8 h  1 - -  ~ - 4 3 h  

A21(s, p ) = k  l _ e _ , ~  h MA(S, p) (35) 

1 - -  ~ 0-28hl 
A22(s, p) = - k  l_e_4S ~ MA(S, P) (36) 

The two mixed boundary conditions of Eqs. (23) 
and (24) lead to two simultaneous dual integral 
equations in the forms, 

fo°°Sf (s, p) MA (s, P) cOS (sx) ds 

- z  1 ( r ° + ~ D ° )  ' 2  Ppo (0<x<a) 

fo°°Ma(S, p) cOS(sx)ds=O, (a-<x<~) 

(41) 

where 

f ( s ,  p) -- ql (1 - -e  -2~hl) (1- -e  -2~h~) 
s ( 1 -- e -4sh) (42) 

fo~sg (s) Ms (s, p) (sx) ds COS 

z Do 
2 pd°x ' 

fo*'Ms(s, p) cOS(sx) ds=O, 

( 0 < x < a )  

( a < x < o o )  

(43) 

where 

g(s) -- Pl (1- -e  -2ah~) (1 - -e  -2ah2) 
s 1 -- e -4ah (44) 

The sets of two simultaneous dual integral Eqs. 
(41) and (43) may be solved by using new 
functions ~1" (~, P) and ~2" (~, P) defined by 

MA(S, P) =foa~#~ ($, p)Jo(s$) d~ 

MB(s, P)=foa$~2*(~ :, P)Jo(s$)d~ 
(45) 

where ]0( ) is the zero-order Bessel function of 
the first kind. 

Inserting Eq. (45) into Eqs. (41) and (43), we 
can find that the auxiliary functions ~1" (~, p) 
and ~ ' ( ~ ,  p) are given by Fredholm integral 
equations of the second kind in the forms, 
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+ foaK~($, v, P) Or(v, p)dz~ 8)? ($, P) 
zr 1 / , e f  ,~ X (46) 

- -  ro t - ~ - - / - ) 0  

zr do (47) 
• ~(#)+ao"/~($, ~)#~*(~)d7= 2 pdO, 

where 

K~($, ~, ~) 
(48) 

fo - "=~ s { f ( s ,  1))--1 }Jo(s~?)Jo(s$)ds 

fo =V s{ g(s)  -- 1 }Jo(srl) Jo(S~ e) ds (49) 

We introduce the following dimensionless vari- 
ables and functions for numerical analysis, 

s 3=~-,  r ~=_d A=A (50) s =~-,  r = - a  -' a '  a 

~=aH, ~=a,~ (51) 

zr 1 ( e°s Do ~ ~*(S,P) (52) ~1' ($, 

• 2"($)= 7r Do ~*(w)  (53) 
2 Pd°l 

Substituting Eqs. (50)~(53) into Eqs. (46) 
~(49), we can obtain Fredholm integral 
equations of the second kind in the forms, 

~1' (~, iO)-t-f01L~(~, H, p) ~*(H, P)dU=]~-~ (54) 

~*(~)  +f0aL2(E, H) ~ * ( H ) d H = f f f  (55) 

where 

L~(E, H, p) 
® S (56) 

L2(~, H) 

= ~ - I f f o ' S {  g ( S ) - 1  }Jo(SU)Jo(S~)dS  

(57) 
h e 2d(h e) 

f(_S_, io ) : .Qi  (1-~-2'~[fiq-ael) ( l - c -  (~-aJ) (58) 
1 -- e-4zh 

h e 2A h e 
/ S \  p~ (l--e-Za(~-~})(1--e - (a-~}) 

g ~ a ] = - g  1--e-4~ h (59) 

Q x = d + ~ - ,  P2=A B2 (60) 

e denotes the eccentricity. 

3. Dynamic Intensity Factors 

The mode III intensity factors in the Laplace 
transform domain, Kl~ (p) and K~I* (p), are de- 
fined and determined in the forms 

Kh7 (p)= lira ~ { a;z~* (x, 0, p)-~'a*~ (x, 0, p)} 
.t.a+ 

/ _el°, ,~ el°sn,rr. ] X~ (61) 
=~-I~]'(l,p) ro-l-~/J0-~Vv0~', (1) 

/ d~i ) ¢1 

K~r (p) = lim ~ { D]~(x, O, p) - iD*, (x, O, p)} x~a + 
(62) 

:~-D0~2*(1) ~4~ 

From the inverse Laplace transform of Eqs. (61) 
and (62), we can obtain the dynamic intensity 
factors in the physical space in the forms, 

el~ & ¢~ ( l ) Ooi4 ( t ) ] (63) 

K °1 ( t ) = ~ * ( 1 ) D o H ( t ) ] - ~ d  (64) 

where 

_ L I  c+~- ~* (1, p) ep,d p (65) M(t) --2~riJc-~ p 

in which the functions ~*(1, p) and ~*(1) can 
be calculated from Eqs. (54) and (55), respec- 
tively. 

4. Discussions 

4.1 Correctness  of results  

The solution of an infinite homogeneous piezo- 
electric strip containing a central crack parallel to 
the strip edges ( e=0  and /~=0) can be derived 
from Eqs. (54) and (55). In the case, the kernel 
functions LI(~,  H, p) and L2(~, H) can be 
obtained as 

L1(3, H, p) 

= fffH-fo ®S{ f ( S , p ) _ l  }]o(SH)Jo (S~)dS 
(66) 

Lz(Z, H) 

fo = f ~ H  S{g  -1}]o(SH)]o(SE)dS 
(67) 
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where 

f ( ~ ,  p )_F[1 -exp ( -2 I "h /a )  ] (68) 
S[ l +exp ( -  217ff a) ] 

g ( S ) =  1-exp( -2Sh/a)  (69) 
1 + e x p ( - 2 S h / a )  

Equations (66) and (67) are the same as those of 

Chen (1998). 

In case of infinite functionally graded piezo- 

electric medium containing a finite crack ( e = 0  

and h---* c~), we find the kernel functions L1(5 ,  

H,  p) and L2(5 ,  H)  in the forms, 

L1 (2 ,  H,  p) 

= f Z H f o ~ S {  QJ S -  I }]o ( SH) Jo ( S~) dS 
(70) 

L2(5, H) 

=, /~H S{ P1 /S - I  }Jo(Sg)Jo(SS)dS (71) 

This solution agrees with those of Shin et al. 

(2003). 

crack length increases. Figure 3 shows the varia- 

tion of the normalized DSIF Km/rof~d against 

normalized time c2t/a with various e/h values 

at B = I . 0  and a/h=0.2 under r0=3.2×106 

N/m 2 and Do=4.8 × 10 -4 C/m z. In this case, Peak 

values of the DSIF increase as eccentricity of 

crack location increases. 

4.2 N u m e r i c a l  r e s u l t s  o f  d y n a m i c  s t r e s s  in-  

t e n s i t y  f a c t o r  
Fig. 2 

The dynamic intensity factors, Eqs. (63) and 

(64), are computed numerically by Gaussian 

quadrature formulas. The inverse Laplace trans- 

formation is carried out by the numerical method 2.50 
developed by Miller and Guy (1966). We assume 

that piezoelectric material properties at y = 0  are 

same as PZT-5H which are as follows, 2.00 

C44=2.3 X 101°(N/m2), e ls= 17.0(C/m 2) 
(72) 

du = 150.4 X 10 -1° (C/Vm) t.s0 

where N, C and Vare the force in Newtons, the ~" 

charge in coulombs and the electric potential in :~ 1.00 
volts, respectively. 

From Figs. 2--5, a general feature of the cur- 

ves is observed: the normalized dynamic stress o.5o 

intensity factor (DSIF) rise rapidly with time, 

reaching a peak, then decrease in magnitude to 

reach static values. Figure 2 displays the variation o00 0.00 
of the DSIF Km/rof~d against normalized time 

c2t/a with various a/h values at B = 0 . 5  and Fig. 3 

e/h----0.4 under ro:3.2 × l0 6 N/m 2 and Do=4.8 × 

l0 -4 C/m 2. Peak values of the DSIF increase as 

3~ I ' l ' I ' l ' 

I 
/ '~°=3"2 x 106N/mZ' D* = 4"8 x 10"4 C/mZ 

/ 1  \ - -   h--Z.0 0, 

1 . 0 0  ~ - -  

0.00 
0.00 4.00 S,00 If® 16.oo 

czt/a 

Dynamic stress intensity factor for various 
a/h values at B=0.5 and e/h=0.4 under 
ro=3.2 × l0 ~ N/m 2 and/)o=4.8 × l0 -4 C/m z 

' I ' I ' I ' 

*co- 3.2 x 106 N/m :,  Do = 4,8 x 104 C/m 2 

1.0, a/h = 1.0 

e/h = 0.8 
e/h=0A 
e/h = 0.0 

/ x 

// '%=. . . . . . . . . . . . . . . . . .  - 

I , I , I L 
4.00 8.00 12.00 16,00 

c2t/a 

Dynamic stress intensity factor for various 
e/h values at B = I .0  and a/h=l.O under 
ro=3.2 × 108 N/m z and /90=4.8 × 10 -4 C/m z 
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The effect of  FGPM (functionally graded piezo- 

electric material) on the variation of DSIF Kin~ 

Z'of~- is shown in Fig. 4. The other parameters 

are chosen as e/h=0.4,  a/h=l.O, r0=3.2× 10 6 

N / m  2 and D0=4.8×  10-4C/m 2. Peak values of 

the DSIF decrease as B value increases. We can 

show that increasing the FGPM gradient (B) is 

2.50 

2.00 

1.50 

1.00 

0.50 I 

0,00 
0.00 

x0 = 3 .2  x 10 ° N / m  z ,  De = 4 .8  x 1 0 4  C / m  z 

/ c ~  e/h = OA, a/h = 1.0 

f \ - - - -  B=O.O 
. . . . .  B=I.O 

. ~ B=2"0 

x x \ 
x 

1 , I I I , 
4.oo s.oo 12.oo 16.oo 

czt /a  

Fig. 4 Dynamic stress intensity factor for various 
B values at e/h=O.4 and a/h=l.O under 
r0=3.2 × 108 N/m z and D0=4.8 × 10 -4 C/m z 

,.r 

F i g .  5 

2,50 I 

1.50 

1.00 

0.50 

0.00 
0.00 

' 4 ' [ ' I ' 
tx 

• B = 1 . 0 ,  e /h  = 0 . 8 ,  a / h  = 1 .0  

-~, - - D o / t o  = 3 .0  x 10 "1° C/N 
r / ' \ \  - -  Do/to = l.OX IO'I°C/N 

. . . . .  Do/ o=-I.o x I ,oC/N 
, ' ~ . ~ - - ' "  Do/to =-3.0 X 10"I°C/N 

p I I I I I ~ t 
4.00 g.oo 12.oo 16.oo 

e2t/a  

Dynamic stress intensity factor for various 
D0/r0 values at B=I .0 ,  e/h=0.8 and a/h= 
1.0 

helpful to the reduction of  the DSIF. It is well-  

known that the SIF of  functionally graded ma- 

terial decreases as the gradient of the material 

properties increases. 

Figures 2 ~ 4  also show that the larger values 

of a/h, e /h  and B, the faster time arriving at 

peak values• Figure 5 shows the variations of 

the DSIF K m / r 0 f ~ d  against normalized time 

c2t/a with various D0/r0 values at B = I . 0 ,  

e/h=0.8  and a/h  = 1.0. Peak values of the DSIF 

increase as the positive D0/r0 value increases, 

but peak values decrease when the negative Do/r0 
value increases. It shows that the negative D0/r0 

values also helps the reduction of the DSIF.  

5. Conclusions 

The electroelastic problem of an eccentric crack 

off the center line in a functionally graded piezo- 

electric ceramic strip under ant i -plane impact 

shear was analyzed by the integral transform ap- 

proach. The properties and mass density of the 

functionally graded piezoelectric material vary 

continuously along the thickness. The imperme- 

able crack boundary condition is adopted. The 

Fredholm integral equations are solved nu- 

merically. The traditional concept of  linear elastic 

fracture mechanics is extended to include the 

piezoelectric effects and the results are expressed 

in terms of the dynamic stress intensity factor and 

dynamic electric displacement intensity factor. 

The DSIF is dependent on both stress and electric 

impact loads, but dynamic electric displacement 

intensity factor is only related to the electric 

impact loading. The DSIF rise rapidly with time, 

reaching a peak, then decrease in magnitude to 

reach static values. The computed results show 

that the DSIF can be greatly reduced by in- 

creasing the gradient of the material properties 

and negative electric displacement. The peak 

values of  the DSIF increase as the eccentricity 

of crack location and crack length increase. 
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